The preferred route for the degradation of silencing target RNAs in transgenic plants depends on pre-established silencing conditions.

نویسندگان

  • Matthew Sanders
  • Nausicaa Lannoo
  • Wendy Maddelein
  • Anna Depicker
  • Marc Van Montagu
  • Marc Cornelissen
  • John Jacobs
چکیده

RNA silencing can be initiated upon dsRNA accumulation and results in homology-dependent degradation of target RNAs mediated by 21-23 nt small interfering RNAs (siRNAs). These small regulatory RNAs can direct RNA degradation via different routes such as the RdRP/Dicer- and the RNA-induced silencing complex (RISC)-catalysed pathways. The relative contribution of both pathways to degradation of target RNAs is not understood. To gain further insight in the process of target selection and degradation, we analysed production of siRNAs characteristic for Dicer-mediated RNA degradation during silencing of mRNAs and chimeric viral RNAs in protoplasts from plants of a transgenic tobacco silencing model line. We show that small RNA accumulation is limited to silencing target regions during steady-state mRNA silencing. For chimeric viral RNAs, siRNA production appears dependent on pre-established cellular silencing conditions. The observed siRNA accumulation profiles imply that silencing of viral target RNAs in pre-silenced protoplasts occurs mainly via a RISC-mediated pathway, guided by (pre-existing) siRNAs derived from cellular mRNAs. In cells that are not silenced at the time of infection, viral RNA degradation seems to involve Dicer action directly on the viral RNAs. This suggests that the silencing mechanism flexibly deploys different components of the RNA degradation machinery in function of the prevailing silencing status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The frequency and efficiency of endogene suppression by transitive silencing signals is influenced by the length of sequence homology.

Transitivity, the spread of RNA silencing along primary target sequences, leads to the degradation of secondary targets that have no sequence homology to the initial silencing trigger. We demonstrate that increasing the distance between direct and adjacent target sequences in a transgenic primary target delays the onset of silencing of a secondary target gene. Silencing can spread in a 3' to 5'...

متن کامل

High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants.

Posttranscriptional gene silencing (PTGS) in transgenic plants is an epigenetic form of RNA degradation related to PTGS and RNA interference (RNAi) in fungi and animals. Evidence suggests that transgene loci and RNA viruses can generate double-stranded RNAs similar in sequence to the transcribed region of target genes, which then undergo endonucleolytic cleavage to generate small interfering RN...

متن کامل

The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology

have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...

متن کامل

Planting the Seeds of a New Paradigm

Although the word ‘revolution’ should not be used lightly in science, there is no other way to describe the recent explosion in our awareness and understanding of RNAmediated gene silencing pathways. The central player in RNA-mediated gene silencing is a double-stranded RNA (dsRNA) that is chopped into tiny RNAs by the enzyme Dicer. The tiny RNAs associate with various silencing effector comple...

متن کامل

Silencing of beta-1,3-glucanase genes in tobacco correlates with an increased abundance of RNA degradation intermediates.

Post-transcriptional gene silencing of beta-1,3 glucanase genes in the transgenic tobacco line T17 is characterised by an increased turnover and, as a consequence, reduced levels of gn1 transgene and endogenous beta-1,3 glucanase mRNAs. Here, additional gn1 RNAs, both larger and smaller than the full-length messenger, are shown to accumulate in silenced plants of the transgenic tobacco line T17...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 11  شماره 

صفحات  -

تاریخ انتشار 2004